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Abstract: In this article, the work carried out is a numerical study of the dynamics of a cyclone modeled by a vertical 

vorticity vector by considering a radial velocity as a function of time t. We made a short general study on cyclones by 

modeling a vertical cyclone starting from the Navier-Stokes equations. A study of the vorticity as a function of the radius and 

as a function of the radial abscissa at different times has been made. We also studied the radial and ortho radial components of 

the velocity as a function of the radius and as a function of the radial abscissa by varying the Ekman number and the Rossby 

number by looking at their impacts when they are increased or they are reduced. In the same dynamics, the influence of the 

decrease in the suction speed over time on the radius of the vortex core has been studied. In short, we have studied the effects 

of the variation of the radial velocity as a function of time. We ended our study by showing that the Ekman number is the most 

important parameter in the dynamics of the cyclone, by showing the relationship that exists between the Ekman number and 

the growth of the rotational motion of a cyclone. 
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1. Introduction 

Nowadays the cyclone is one of the most impressive and 

devastating natural phenomena. Cyclonic systems generate 

strong vortex structures that are of interest to meteorology 

and the fluid dynamics of geophysical flows. In the tropical 

and subtropical regions of the continents, they are the source 

of a large part of the gusts of wind with very high speeds, 

storms and torrential rains observed, frequently associated 

with material damage and loss of human life. 

The frequent observation of episodes of tropical cyclones 

raises the question of their probability of occurrence, 

generally assessed from the analysis of observations from 

geostationary satellites in visible and infrared light above the 

globe and forecasts. Knowing that cyclones are not punctual, 

but affect most of the tropical regions of the globe, it is 

necessary to analyze them in spatial and temporal dimensions, 

therefore from a dynamic point of view. [1, 2] 

In this context, many studies have been carried out on 

geophysical and oceanic flows. Models have been developed 

with the aim of predicting the trajectories of cyclones in 

order to minimize the material damage caused. 

Certainly investigations on the dynamics of three-

dimensional vortices have been made, but to our knowledge 

no study on the explicit influence of the radial velocity has 

been carried out. However, in the case of a vertical vortex, 

this radial velocity plays the role of suction and therefore it is 

useful to know how it acts on the dynamics of the vortex. If 

the suction phenomenon increases or decreases, what is the 

behavior of the vortex? 

The devastating power of a cyclone is exerted in three 

areas, the wind, the rain, the sea. [3-6] 
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2. Modeling a Cyclone 

The objective of our study will be here to give a physical 

approach to what a cyclone is through theoretical modeling 

and then numerical modeling. Let us begin first of all to 

introduce an essential quantity in the study of the flows of 

fluids in rotation which is the vorticity. 

1) The vorticity 

The study of the deformations of a fluid element reveals a 

term of local rotation which is the antisymmetric part of the 

tensor of the velocity gradients. Thus vorticity will be a 

privileged tool to describe the local rotation movements 

inside a fluid. 

2) The vorticity vector 

The vorticity vector at a point r in space is defined by: ω���	�r� � 	 rot������V���(r), where V���(r) is the velocity field of the flow. 

Vorticity occurs whenever the flow is not potential and 

therefore in viscous fluids. 

In some cases the flow is potential outside a line (the 

"core") of small diameter compared to the overall size of 

the flow. The rotation of the fluid takes place around the 

“heart” where the vorticity is located. Such flows are called 

vortices and are found in atmospheric waterspouts, cyclones 

and hurricanes clearly visible over several hundred 

kilometres. This allows us to use the dynamic study of 

vorticity to materialize the deadly vortices that are cyclones. 

[7] 

3) Vorticity transport equation 

Consider the Navier-Stokes equation 

�
	����
�� 	 � �V.���� �����. V	���� � � �

� ����	P � ν∆V	���� � g	���	               (1) 

With V��� he velocity field 

P is the pressure field, ρ the density of the fluid ν its kinematic viscosity and g	��� represents the gravity field. 

We will now establish the vorticity transport equation. If 

we assume that the density is constant then by applying the 

rotational operator to both sides of equation (1), it comes 

after calculation 

������
�� � �V��������ω��� � �ω��������V��� � ν∆ω���	                      (2) 

������
�� : describes the temporal evolution of the vorticity which 

is very important in unsteady state. �V��������ω��� : characterizes the convective effect, inertial 

therefore of vorticity transport, is very important, especially 

in geophysical flow. ν∆ω���: represents the effects of damping, ordering of the 

flow, therefore the viscous effects. �ω��������V��� which involves the variations of the speed in the 

direction of the vector vorticity since it contains the 

projection of the vector gradient on the direction of ω���. It is 

this term that explains the phenomenon of stretching. It is an 

important mechanism of vorticity amplification and there 

fore of vortex intensification. [7, 8] 

4) Stretching phenomenon 

 
Figure 1. Stretching of a vorticity tube. 

2.1. Theoretical Modeling of a Cyclone 

Thus for the modeling we consider a uniform vorticity 

inside a cylindrical tube of radius r�, infinitely elongated in 

the vertical direction in order to materialize the "eye" of the 

cyclone by the diagram below. 

 
Figure 2. Schéma représentant l’œil d’un cyclone en rotation. 

In this model, the vorticity is assumed to be purely axial at 

any time t, ω��� � 	ωe���  and we will use the cylindrical 

coordinates �r, θ, z�. [9] 

2.2. The Navier-Stokes Equations 

Consider the vorticity equation for an incompressible fluid 

flow. 

������
�� 	 � �V��������ω��� � 	 �ω��������V��� � ν∆ω���	                   (3) 

divV��� 	 � 0                                    (4) 

To solve our problem, we make the following simplifying 

assumptions: 

Symmetry axis assumptions: 

For any scalar field F, we have 

�'
�( 	 � 0                                     (5) 

Hydrodynamic assumptions: 

We assume that the velocity fields are finite at r � 0 at z � 0.  

La vorticité est axiale c’est-à-dire ω��� � ωe	���� 

2.3. Determination of the )* and )+ Components of the 

Velocity Field 

Let us first start to study the continuity equation which will 
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allow us to have the profile of the velocity field. 

Taking into account the symmetry axis hypothesis, the 

continuity equation is reduced to 

divV��� = �
�, �rϑ,� + �

�� �rϑ�� = 0                   (6) 

Since the vorticity vector is unidirectional and with respect 

to the axis symmetry to the flow, we arrive at the following 

equalities: 

�./
�� – �.1

�, 	 = 0                                   (7) 

�.2
�� 	 = 0  

ω��� 	 = 	 �.2
�, e���  

From the last equation we see that the vorticity is a 

function only of the variable r. 

ω��� = ω�r, t�e��� 

He then comes 

��
�� 	 = 0	 ⟹ �4�

��4 = 0  

On the one hand, as the partial derivatives with respect to 

the variables θ and z of the component of the following 

velocity vector e��(  are identically zero, we deduce that the 

latter is a function only of the distance from the point M 

considered to the axis of rotation. 

�.2
�� 	 = �.2

�( ≡ 0 ⟹ ϑ( 	 = 	 ϑ(�r�  

To have the profile of the components ϑ,  et ϑ�  velocity 

field we use the equalities 

�
�,

�./
�� = �4.1

�,4 	                                    (8) 

By permuting the order of derivation with respect to ret z 

in the expression above we obtain 

�
��

�./
�, = �4.1

�,4 	                                   (9) 

�
,

�.1
�, + �4.1

�,4 	 + 	 �4.1
��4 = 	0                         (10) 

⟺ 7�
,

�
�, + �4

�,4 	 + 	 �4
��48 ϑ� = 	0                      (11) 

So the Laplacian of the component of the velocity field 

along the z axis is zero. 

ϑ� = ϑ��z� = 2. az	 + b                      (12) 

ϑ, 	 = 	 ϑ,�r� 	 = 	 −a. r + <
,  

With k an integration constant. 

To determine the integration constants, we must return to 

the hydrodynamic boundary conditions. 

To z	= 0;	ϑ�	 = 0 ⟹ 	a × 0	 + b	 = 0	 ⟺ b = 0 

so 

ϑ� = ϑ��z� = 2. az 

Taking into account the hydrodynamic hypothesis in the 

vicinity of the "eye" (r = 0) we must have an integration 

constant equal to zero for our problem to make sense. So k = 

0 finally the components of the velocity field following r and 

z are respectively: 

ϑ, 	 = −a. r                                 (13) 

ϑ� = 2. a. z                                 (14) 

The parameter a has the dimension of a frequency must be 

positive at all times so that we do not find ourselves in a 

situation where the current becomes downward. 

We ask a = a�f�t� with a� a positive result. 

Taking into account simplifying assumptions and 

boundary conditions. 

Let us return to the vorticity transport equation. 

��	�����
�� 	 + �V	����∇	�����ω	����� = 	 �ω	�����∇	�����V	���� + ν	∆	ω	�����  

Since the vorticity is axial and only depends on the 

variable r, we then obtain the following reduced equation: 

��
�� 	 + ϑ, ��

�, 	 = 	ω �.1
�� 	 + ν 7�

,
�

�, + �4
�,48 ω         (15) 

Then by replacing @A  and @B  formula speakers we arrive at the following 

expression. 

��
�� 	 − a	r ��

�, 	 = 2aω	 + 	 C
, . �

�, 7r ��
�, 8             (16) 

which can be put in the following conservative form. 

��
�� 	 = 	 �

,
�

�, Da	r	E + 	ν	r ��
�, F                    (17) 

This is the vorticity evolution equation for the model 

studied here. It is this equation that we are going to comment 

on and adimensionalize in order to reveal dimensionless 

quantities that serve to characterize the dynamics of our 

"cyclone". 

2.4. Initial Conditions on the Vorticity Field 

We impose: 

ω�r, 0� = GΩ 71	 − ,J
, 8 	si	L < r�

0	si	L ≥ r�
               (18) 

Far from the core we admit that from a certain distance R 

the vorticity no longer varies along the radial direction. We 

therefore write 

r ≥ O	 ��
�, = 0                              (19) 

2.5. Finding Stationary Solutions 

At very large time scales, if the parameter a is independent 

of time, we can find an analytical solution of equation (16) 
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because in steady state the partial derivatives with respect to 

time are identically zero. This allows us to achieve to the 

following equation: 

0 = 	 �
,

�
�, Da	r	Eω + 	ν	r ��

�, F                      (20) 

Da	r	Eω + 	ν	r ��
�, F = 	η	                       (21) 

As the equation to be integrated depends on the only space 

variable we can pass from this partial differential equation to 

an easy to solve first order differential equation. 

Qa	r	Eω + 	ν	r dω
dr R = 	η 

With η a constant. 

ω = 	 ω�	eS	 T
4U	,4

                         (22) 

with ω�	 the value of the vorticity when equal to zero. 

After having found a stationary solution of the equation 

which characterizes a particular case of the problem, we tried 

to find a more general solution taking into account this time 

the spatial and temporal aspects of the problem. 

For this, we used a numerical solution method. But before 

approaching the numerical modeling let us first make the 

problem dimensionless. 

2.6. Adimensionalization of the Vorticity Evolution 

Equation of the Model 

The object of this so-called similarity theory is to reveal 

dimensionless quantities characteristic of the phenomenon 

studied. From then on, the only data of a set of these 

dimensionless numbers can make it possible to define a 

family of physical situations with the same solution. 

Now we will apply this theory to our equation established 

previously. 

To do this, we choose reference quantities: r� is a reference length. Τ�	, Ω designating the reference time 

Thus we define the different adimensional quantities of the 

equation which will be starred: 

ω∗ = 	 �
X  

t∗ = �
YJ  

	r∗ = 	 ,
,J  

By replacing in the equation 

��
�� 	 = 	 �

,
�

�, Da	r	E + 	ν	r ��
�, F  

we obtain the following dimensionless equation. 

��∗
��∗ = 	 �

,∗
�

�,∗ DEk �
�,∗ �r∗ω∗� − �Ek − Ro. f�t�. r∗E�ω∗F   (23) 

With 

Ek	 = 	 ν
Ωr�E

	et	Ro = 	 a�Ω  

We recall that we set a = a�f�t∗� 

These numbers are called Ekmann's and Rossby's numbers 

respectively. Their knowledge is fundamental in the study of 

geophysical movements. The first measures the importance 

of viscous effects compared to rotational effects while the 

second compares inertial and rotary effects. In cyclonic flows, 

the Rossby number is usually very small compared to the 

Ekmann number. Note that the report 

]^
_< 	 = 	 `	,J4

C 	 = Re                         (24) 

This ratio is equivalent to a Reynolds number. 

The dimensionless initial condition at t*= 0 is 

ω∗�r∗, 0� = a�1	 − r∗�	si	r∗ < 1	0	si	r∗ ≥ 1               (25) 

The dimensionless boundary conditions on the z-axis and 

very far from the core are 

ω∗�0, t∗� = 1                           (26) 

And far from the heart we have 

r∗ ≥ R∗ ��∗
�,∗ = 0                          (27) 

The vorticity evolution equation obtained for the model is 

of the type of nonlinear partial differential equation 

impossible to solve analytically. Considering this difficulty 

of resolution we resorted to a numerical modeling of our 

problem. 

It is a nonlinear partial differential equation that cannot be 

solved analytically. So to determine the velocity and vorticity 

fields we will use a numerical resolution model. 

2.7. Numerical Modeling of a Cyclone 

In this part we will make a model, which with the help of 

the numerical study allows us to understand the dynamics of 

a cyclone and the influence of the dimensionless numbers 

defined previously, therefore the effects of viscosity and 

convection with respect to the rotational effects. To do this 

study we have defined a physical domain of small 

dimensions compared to the phenomenon as a whole. [10] 

2.8. Discretization of the Physical Domain 

In this paragraph we have assumed a physical domain in 

the core located between the axis of rotation and the lateral 

surface of the vorticity tube of radius r0, which we have 

divided with a regular discretization step δ between two very 

close points. 

We have considered an elementary segment centered at 

point P and terminals Wet E (see figure below). 
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Figure 3. Diagram of discretization of the physical domain. 

Let's pose Lbc�	∗ � Lb∗ � dL∗et dL∗ � 	 �
efS�im is the maximum number 

of nodes. 

Integrate our equation (23) between points W and E. We 

have 

By asking Lg � 	 hg
hA∗ then he comes 

� aQij.Abkl∗
hA∗ � �

E m�no � Op. q�r∗��LeS�∗ �EsRt ubS�∗ +Lb	∗ D2 ij
hA∗ �

�
AvF ub	∗  

� wxno. Lb	c�∗
dL∗ � 12 m�no � Op. q�r∗��Lec�∗ �Esyz ub	c�∗ � Le∗Lg ub	∗� 

With 1 M { M {| 

The discretized initial condition is then 

u�∗ � }�1	 � Lb	∗�	~{	{ M {�0	~{	L∗ N {� �2.2.4. ��  

Les conditions aux limites sont approchées par 

u�∗ � 0	and	uefS�∗ � 	 uef∗ � 0               (28) 

This system of trigonal equations is solved thanks to the 

algorithm of Thomas. [11, 12] 

3. Results 

3.1. Influence of the Decrease in Aspiration Speed over 

Time 

In this part we posed the radial dimensionless suction 

velocity is given by 

ϑ,∗ � �	�1 � �g∗�. L∗ 

Figures 4 and 5 show the profiles of the vorticity and the 

ortho-radial velocity as a function of the radial coordinate for an 

Ekman number equal to 1 and a low Rossby number. As time 

increases, the radius of the vortex core shrinks due to the 

decrease in the intensity of the suction velocity. To compensate 

for this narrowing, the diffusion effects are amplified which 

results in a spreading of the ortho-radial velocity. [13] 

  
Figure 4. Variation of vorticity as a function of radius at different times Ek = 1; Ro= 10SE. 

  
Figure 5. Variation of velocity as a function of radius at different times Ek = 1; Ro = 10SE. 

When the Rossby number increases up to the value 10, the 

steady state is quickly reached if the suction speed does not 

vary over time as we can see in Figures 4. On the other hand, 

if the latter decreases over time we obtain the same 

phenomena as before (see figures 4) In other words the 

Rossby number is not large enough to disturb the topology of 

the flow. The effect of the Ekman number is still 

preponderant. 
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                                                                a                                                                                                                         b 

Figure 6. a) Variation of vorticity as a function of the radial abscissa at different times Ek = 1; Ro= 10. b) Variation of the ortho-radial component as a 

function of the radial abscissa at different times Ek = 1; Ro= 10. 

  
                                                                a                                                                                                                         b 

Figure 7. a) Variation of vorticity as a function of radius at different times Ek = 1; Ro= 10. b) Variation of velocity as a function of radius at different times Ek 

= 1; Ro= 10. 

  
                                                                a                                                                                                                         b 

Figure 8. a) Variation of vorticity as a function of the radial abscissa at different times Ek = 0,1; Ro = 10. b) Variation of the ortho-radial component as a 

function of the radial abscissa at different times. Ek = 0, 1; Ro = 10. 

  
                                                                a                                                                                                                         b 

Figure 9. a) Variation of vorticity as a function of radius at different times Ek = 0,1; Ro= 10. b) Variation of velocity as a function of radius at different times 

Ek = 0,1; Ro= 10. 
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Figures 5 and 6 show that when the Ekman number is low (Ek = 0.1) the attenuation of the ortho-radial velocity no longer 

has any effect on the profiles of vorticity and the ortho-radial velocity. [13, 14] 

  
                                                                a                                                                                                                         b 

Figure 10. a) Variation of vorticity as a function of radius at different times k = 1; Ro= 10SE. b) Variation of velocity as a function of radius at different times 

Ek = 1; Ro= 10-². 

3.2. Case Where the Aspiration Speed Increases Over Time 

Now we consider the case where the suction velocity is an 

increasing function of time is given by 

ϑ,∗ � ��1 � �Sg∗�. L∗ 

When the intensity of the suction increases the vortex 

regime is supercharged. The radius of the core of the vortex 

as well as its intensity increase rapidly. The viscous effects 

are quickly engulfed by the inertial effects which will lead to 

an early turbulent regime. 

We looked at the effects of the variation of the radial 

velocity as a function of time. It appears from the results 

obtained by the numerical simulations that the Ekman 

number is the most important parameter in the dynamics 

of the cyclone. Its increase results in a growth of the 

rotational movement to the detriment of the effects of 

viscosity. 

4. Conclusion 

The study presented in this article is a study of the 

dynamic analysis of cyclone phenomena. 

With regard to the modeling and the theoretical study, we 

note first of all that the conditions initially imposed have 

been respected. We have treated the case of a supposedly 

vertical and isothermal cyclone with simple axis symmetry 

and hydrodynamic assumptions in order to determine the 

longitudinal and radial components of the velocity field. The 

general Navier–Stokes evolution equation is put in a rather 

simple form but impossible to solve analytically due to the 

presence of non-linear terms. 

The equations of the continuous domain are then solved by 

the finite volume control method. 

The results of the analysis of the fields of vorticity and 

speed conditioned by the adimensional numbers of Rossby 

and Ekmann very characteristic in dynamics of the fluids 

as well as the numerical parameters also brought out the 

contribution of the method of finite volumes of control on 

the study of the dynamics our problem. Indeed, the 

examination of the properties of speed and vorticity made 

it possible to illustrate the distinction between the 

amplification and the attenuation of the vorticity therefore 

of the cyclone. 

As a result, the conclusions obtained will be more 

accurate and relevant because the model reflects reality 

more faithfully. The idea of making the dynamic study of 

a cyclone model with the explicit influence of the radial 

velocity to our knowledge inaccessible until now, remains 

attractive. We faced a lack of data, the cyclone is a natural 

phenomenon whose study is a little less advanced. 

However, we can consider that our analysis of the 

influence of the radial velocity on the dynamics of the 

tropical cyclone can be the starting point in a more general 

physical framework. 
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